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Indexing Kossel patterns 

NElL HARRIS*  
Department of Metallurgy and Materials Science, University of Liverpool, UK 

Procedures for the indexing of Kossel patterns are fully explained with reference to the use 
of pattern symmetry, diffraction curve intensity, line curvature and Kossel curve 
intersections. The indexing methods are illustrated by analysis of a face centred cubic 
pattern. General application of the concepts described here to the more difficult indexing 
problems experienced with hexagonal and orthorhombic crystal structures is included. 

1. Introduction 
Although X-ray divergent beam (Kossel) dif- 
fraction has been understood for many years and 
applied to a large variety of crystallographic 
problems, very little has been written on the 
subject of indexing Kossel patterns. Inyestiga- 
tions have been largely confined to studies with 
cubic crystals where indexing is straightforward. 
When, however, we wish to apply the technique 
to less simple crystal structures it is useful to 
consider some general guides to the indexing of 
these patterns. Since it is not clearly set down 
what indexing techniques have been used by 
authors of earlier papers on Kossel diffraction 
it is the purpose of this paper to state the 
methods that have been developed and employed 
in our laboratory for this purpose. 

The information in a single Kossel pattern is 
large and the pattern appears at first sight most 
complicated; yet the indexing of such patterns is 
not difficult and the results are reliable simply 
because it is possible for any deductions to be 
cross-checked in several ways. The indexing 
problem is, therefore, by no means as great as in 
the case of Debye-Scherrer patterns from low 
symmetry crystals, and overlapping of lines from 
planes with similar spacing but different Miller 
indices are impossible. Kossel curves are 
indexed by consideration of one or other, or a 
combination of the pattern symmetry, relative 
intensity, curvature, and their intersections one 
with another. The symmetry is dependent on the 
crystal structure alone, and the identification of 
symmetry elements not only increases knowledge 
of the crystal structure but also indicates certain 
crystallographic directions. Relative intensities 
of the diffraction curve are complex functions of 

a number of parameters, chief among these being 
the structure factor, and consideration of this 
alone will be sufficient for our purposes. The 
curvature depends on the Bragg angle and 
increases with decreasing lattice spacing. Kossel 
curve intersections depend on symmetry and 
Bragg angles in a manner which will be described 
below. Fig. la is a typical back-reflection Kossel 
pattern and Fig. lb is a drawing including some, 
but not all, of the Kossel curves present in Fig. 
la. These will serve to illustrate many of the 
indexing techniques described here. The fully 
indexed pattern is shown in Fig. lc. 

2. Symmetry 
The symmetry is readily revealed in Kossel 
patterns because each plane of a type with non- 
zero structure factor diffracts its own Kossel cone 
and the position of each curve in the pattern 
depends on the crystallographic direction of the 
normal to the diffracting plane. "Mirror  lines" 
are easily drawn on a pattern as in Fig. lb but it 
must be noted that the pattern on one side of 
such a line will be a distorted image of the 
pattern on the opposite side due to the gnomonic 
projection of the diffraction pattern onto the flat 
plane of the recording film. Intensities of the 
Kossel curves may also differ on opposing sides 
of a "mirror line". Although, however, the two 
sides may not be exact mirror images every point 
on one side of a "mirror line" corresponds to a 
similar point on the other side and in this sense 
they are easily recognizable features of a Kossel 
pattern. Several "mirror lines" have been drawn 
in Fig. lb and it is clear in Fig. la that although 
curve 3 is the "mirror"  of curve 4 in line BB', 
the intensities of the two lines are very different. 
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Figure 1 Analysis of austenite Kossel pattern. 
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Similarly, the regions on either side of line AA' 
in the vicinity of point Q are not exact mirror 
images but exhibit some distortion due to the 
projection. 

Crystallographically these lines are very 
significant. They meet at points of symmetry and 
they represent the projection of particular sets of 
crystallographic planes onto the recording film. 
All points on a single "mirror line" are per- 
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pendicular to a particular crystallographic 
direction (i.e. in the same zone). In Fig. lb we 
have "mirror lines" intersecting at points P, Q, 
R, S and T. Q exhibits four-fold symmetry, P 
and T three-fold and R and S two-fold. Crystallo- 
graphic text books list the types of symmetry 
axes to be found in different crystal structures 
[1] and in this case the crystal structure is cubic. 
Q must represent a [100] direction and is the 
point at which a line in the [100] direction from 
the crystal cuts the recording film. P and T are 
[111] and [11 i] directions and R and S [110] 
and [101] respectively. The [100] and [111] 
directions are in the [0i 1] zone and so the 
"mirror line" AA' joining P and Q must be the 
trace of an (0i 1) plane and all points on this line 
are in the [0 i l ]  zone. Similarly BB', CC', 
DD', EE' and FF '  are the traces of (011), 
(1 i0), (010), (10i) and (001) planes respectively, 
and points on these lines are in the corresponding 
zones. 

Crystal structures which exhibit less symmetry 
have fewer "mirror lines" and fewer symmetry 
points. It is noteworthy that in the cubic case the 
whole pattern is recorded in the [100], [11 I] 
[110] triangle. This is triangle PQR in Fig. lb 
and the pattern in triangles PQS and RQT is a 
repetition of the same pattern. For non-cubic 
crystals, however, a much larger solid angle must 
be recorded to ensure that the whole pattern is 
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observed and this has a bearing on the camera 
design. 

Continuing further with the indexing of the 
pattern Fig. lb symmetrically related Kossel 
curves have similar Miller indices and are 
diffracted by planes of the same family. Curves 1 
and 2 are symmetrically related through mirror 
line AA'  and curves 1 and 5 through mirror line 
EE'. Because Q is a point of four-fold symmetry 
curves 3 and 4 must also be diffracted by 
planes of the same family as curves 1 and 2. We 
have found that curves 1 to 5 are all from planes 
of the same type and study of the other curves 
reveals that there are curves from five different 
families of lattice planes. Four other families of 
planes are represented by curves 6 to 12, 13 and 
14, 15 to 17 and 18 to 20. Some curves are 
crossed by "mirror lines" in such a way that one 
half of the curve is reflected across the line. 
Examples of this are the reflection of curve 8 in 
AA'  and curve 14 in AA',  CC' and EE'. Another 
important case is the reflection of curve 4 in 
AA'  and CC'. Such curves have their centres on 
the lines concerned, or if there are two such lines 
more precisely at their intersection. The signifi- 
cance of this is that the diffracting planes for 
those curves must be in the zone dictated by the 
"mirror line". This condition introduces limita- 
tions on the Miller indices of curves centred on 
the "mirror lines" and these are tabulated for 
Fig. lb in Table I. All curves on AA'  are in the 
[0i 1 ] zone and their Miller indices must satisfy 
the rule that the scalar product (hkl). (0i 1) = 0 
which is only satisfied if k -- I. Thus curve 14 
must obey these rules for AA',  CC', EE' and have 
Miller indices h = k = l; curve 4 must obey 
them for AA'  and EE' so that h = k = I for this 
line also. Curve 8 is cut symmetrically by line 
AA'  and its Miller indices must satisfy the 
condition k = 1. 

A great deal has been achieved by considera- 
tion of symmetry alone, but it is not possible to 
complete the indexing procedure without the 
consideration of at least one other of the 
indexing aids available. 

3. Intensity 
It is unusual for Kossel curves to be recorded 
from families of planes other than those with the 
highest structure factors. When we consider 
such structures as body or face centred cubic or 
hexagonal crystals there are a large number of 
planes excluded from diffraction by having 
structure factors of zero. An additional factor 

TABLE I 

Mirror line Trace of planes Conditions of 
Kossel curves with 
centre of 
symmetry on the 
mirror line 

AA" (0il) k = 1 
BB' (011) k =  - I 
CC' (1i0) h = k 
DD' (010) k = 0 
EE' (10i) h = l 
FF' (001) l = 0 

included in Kossel curve intensity calculation is 
1/sin 20 where 0 is the Bragg angle and this 
results in curves with high or low Bragg angles 
being more intense than those with Bragg angles 
near to 45 ~ A complete analysis of intensity 
factors cannot be given here and is not a 
necessary prerequisite for indexing to be carried 
out successfully. When the crystal has pre- 
viously been the subject of Debye-Scherrer 
diffraction experiments it is a simple matter to 
list the planes diffracting the most intense lines 
and to look first for these in the Kossel pattern. 

If  we consider the pattern in Fig. 1 it is cubic 
and there are curves recorded from five different 
families of lattice planes. We set out in Table lI 
the possible Miller indices of these planes for 
different cubic crystal structures when lattice 
planes with zero structure factor are omitted. 

TABLE II First five diffracting planes in cubic 
systems 

Simple cubic bcc fcc 

(100) (110) (111) 
(11 o) (200) (200) 
(111) (211) (220) 
(200) (220) (311) 
(21 O) (3 t O) (222) 

in the case of the pattern under consideration 
we have seen in Section 2 that two curves are 
centred on the point of three-fold symmetry 
P and have Miller indices h = k = I. These two 
curves have different curvature and therefore 
have different Miller indices. The crystal must, 
therefore, be face centred cubic in structure and 
the Miller indices of these two curves (1 1 1) and 
(222). If  we return to Table I it is now seen that 
curves 1 to 5 are diffracted from {111 } planes 
and curves 13 and 14 from {222} planes. Curve 
18 surrounds R and curves 18 to 20 are from 
{220} planes. Curve 8 is not associated with any 
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symmetry point and is from {311 } as are all the 
curves 6 to 12. Finally curve 17 has AA' as major 
axis, surrounds Q and is of type {200}. 

4. Line curvature 
It is well known that Kossel diffraction cones 
have semi-apex angles ~ = (90 - 0) and that a 
Kossel curve is the conic section formed by the 
intersection of such a cone with the fiat recording 
film. Thus for any specified specimen to film 
distance, the cone apex being at the specimen, 
the curvature of the recorded Kossel curves is 
dependent on the Bragg angle and the lattice 
spacing. Decreasing the lattice spacing increases 
the Bragg angle, decreases the semi-apex angle of 
the Kossel cone and thus increases the curvature 
of the Kossel curve. For cubic crystals the sum of 
the Miller indices will, therefore, be higher for 
curves with high curvature and low radius. This 
is not always so when non-cubic crystals are 
considered. When the specimen to film distance 
is fixed we may draw a graph indicating the 
position and curvature of a Kossel curve in the 
pattern assuming a given Bragg angle. The 
position and curvature also depend on the 
normal direction of the crystal plane and graphs 

can be drawn for a sequence of values of this 
parameter. Such graphs, one of which is seen in 
Fig. 2, have been plotted by Rowlands and Bevis 
[2] and are directly equivalent to Grenninger 
charts used for the analysis of L/iue patterns. 
With a set of these charts (and a different chart is 
necessary for each family of planes represented), 
it is possible to determine an approximate value 
for the Bragg angle of each curve in the pattern. 
The normal directions are also quickly read off 
from the co-ordinates on the chart and the poles 
plotted onto a stereographic projection. 
Numbers at the curve midpoints are the angular 
distances of the pole from the centre of the 
pattern and numbers at the circumference are the 
angular rotation of the chart from a fixed 
direction. This method of indexing is effective if 
the specimen-film distance is fixed and one has 
charts for each of the Bragg angles occuring in 
the pattern. The pole position is simply found by 
fitting the Kossel curve to a curve on the chart 

a n d  the co-ordinates are noted. 
Another stereographic projection method is 

that of Peters and Ogilvie [3] in which a gno- 
monic net is constructed and superimposed on 
the pattern. The co-ordinates of three or more 
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Figure 2 Rowlands-Bevis chart 
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points on each Kossel curve are then plotted onto 
a stereographic net where the curves appear as 
circles. At least three points on each curve are 
required for the geometrical construction neces- 
sary to draw the circle on the stereographic 
projection. Accurate construction of the circle is 
only achieved if the points are well separated 
from one another. This method again results in 
the poles of the diffracting curves being plotted 
on the stereographic net and the Bragg angles 
determined. 

Both of these methods can yield the Bragg 
angle and pole position to a precision of • 2 ~ 
Indexing is then achieved by consideration of 
Bragg angles, the angles between poles and the 
pattern symmetry. These techniques are capable 
of  solving the indexing problems of the most 
difficult Kossel patterns if symmetry is also 
considered. 

5. Intersect ions 
One of the most readily appreciated features of  
any Kossel pattern is that the Kossel curves 
frequently intersect one another. In some cases 
more than two Kossel curves intersect at the 
same point and these will be referred to as 
multiple intersections. All intersections, whether 
between two curves or multiple, can be studied to 
give us information about  the crystal concerned, 
and their crystallographic basis can be of con- 
siderable benefit when indexing patterns from 
cubic crystals. 

I t  was shown in Section 2 that curves could be 
distinguished as belonging to lattice planes of the 
same family by symmetry considerations. The 
same conclusions can be drawn by counting the 
number of  intersections on each curve. All curves 
in the same family are symmetrically related and 
have an identical number of intersections with 
other curves. It  is possible that curves from 
different families of  lattice planes may display 
the same number of intersections but such an 
occurrence is fortuitous. The chief difficulty 
encountered with, this method is that whole 
curves are rarely recorded, but the total number 
of intersections can often be deduced f rom 
symmetry considerations. The numbers of  
intersections in which the curves in Fig. la  
participate are given in Table III .  An easier 
method is to count the number of  multiple 
intersections on a given curve since these are less 
numerous, and these are also given in the table. 
Study of multiple intersections has other benefits 
which will be discussed later. In this example 

there are no quintuple intersections as are often 
found in Kossel patterns from b c c  crystals. 

T A B L E  I I I  

Miller indices of Total intersection Triple intersection 
curve points points 

(111) 30 12 
(200) 48 16 
(220) 38 14 
(311) 24 4 
(222) 18 6 

The conditions for intersections have been 
established by Kossel [4] and more recently by 
MacKay [5] and Frazer and Arrhenius [6]. 
Intersections are of three types illustrated in 
Fig. 3, and although the diagram has been re- 

TYPE Z 
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Figure 3 Kossel cone intersections. 
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stricted to three planes for ease of drawing, more 
planes can be involved in each case. 

Type I intersections form the typical lens 
shape which is the basis for some lattice para- 
meter determination methods [7]. If  a 1 and a s 
are the semi-apex angles of each cone and r is 
the angle between the plane normals (i.e. cone 
axes) then for type Ia intersections al  + as > r 
and for type Ib [ a 1 - a s [ > r Type I I I  inter- 
sections include three or more diffraction curves. 
They are known as "accidental" intersections 
because they only occur at one wavelength- 
lattice spacing ratio and unlike type II  inter- 
sections they do not exhibit symmetry charac- 
teristics. These intersections are very sensitive to 
the magnitude of the lattice parameter and 
extremely useful for precise lattice parameter 
determination [8]. 

Type II  intersections are more important for 
indexirrg because they occur between Kossel 
curves from well defined sets of  lattice planes. 
They are often referred to as invariant, geo- 
metrical, persistent or inevitable because they are 
not sensitive to lattice parameter or wavelength 
changes but depend on the crystal structure. 
Points L in Fig. lb indicate one pair of  inter- 
sections of this type. There is a symmetry 
associated with these intersections and it is 
always possible to draw one line which is the 
major axis of all the curves concerned. This is the 
line AB in Fig. 3. As we have seen in Section 2, 
this means that all the planes contributing to 
such an intersection are in the same zone and 
their Miller indices must obey the zone law. 
Again symmetry dictates that these intersections 
must occur in pairs and this identifies them from 
type III  intersections which appear singly. 

MacKay [5] produced a good analysis of 
multiple intersections but his conclusions were 
inaccurate. It  is therefore necessary to reiterate 
his argument briefly if it is to be of use for our 
purposes here. I f  one takes the apex of a Kossel 
cone as the origin and draws a sphere around this 
point with unit radius then the plane in which the 
Kossel cone intersects the sphere is called the 
Kossel plane and the distance of this plane from 
the origin is A/2d. This is shown in Fig. 4a. I f  the 
crystallographic axes are taken as co-ordinate 
axes the equation of a Kossel plane can be 
written as follows: 

hx ky lz ~t 
- + ~ + - - Q ( 1 )  
a c 2d s 

where (hkl) are the Miller indices, (a, b, e) the 
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lattice parameters, d the plane spacing and A the 
wavelength. This equation is for orthogonal axes 
only. 

KOSSEL 

PLANE 

.K...._U N I T 

SPHERE 

(a) 

Ib) 

Figure 4 Kossel plane intersections. 

A persistent multiple intersection occurs when 
three or more Kossel planes meet in a line within 
the unit sphere as in Fig. 4a. The condition for 
three planes as in Equation 1 to meet in a line is 
that there is no single solution to the three 
simultaneous equations and the following four 
determinants are zero. 

hlklll hlklQ1 
hsksl2 = hsksQ2 
h~k~l~ h3k~Q~ 

hlQJ1 
= h2Q212 

hzQJ3 

Qlklll 
Qsk212 = 0 
Q3k ja 

(2) 

These stringent conditions make it possible to 
list the Kossel planes from any given crystal 
structure that will meet in a line. The fact 
overlooked by MacKay is that if they meet in a 
line outside the unit sphere the Kossel curves do 
not overlap and multiple intersections are not 
recorded. Such is the case with the curves (31 1) 
(200) and (1 1 1) in Fig. lc which obey the con- 
dition in Equation 2 but do not intersect because 
the Kossel planes meet in a line outside the unit 
sphere. This situation is illustrated in Fig. 4b. 

It  is, nevertheless, useful to list possible 
multiple intersections. For this purpose a 
hypothetical crystal was considered and a 
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computer program was written to investigate 
every possible multiple intersection. Since some 
limit had to be made on the number of diffracting 
planes investigated the six with the lowest Miller 
indices were chosen and the contribution made 
by these planes to multiple intersections was 
studied. Clearly if a Kossel curve is absent 
because its structure factor is zero it cannot 
participate in a multiple intersection. At the 
outset simple cubic, face and body centred 
cubic systems were studied. Then by variation of 
the lattice parameters in the computer data 
tetragonal and orthorhombic structures were also 
examined. 

Some of the results are shown in Tables IV and 
V. The Miller indices of the diffracting planes 
which may participate in multiple intersections 
are listed. In Table IV the first three planes listed 
are (1 1 1) (200) (31 1) and clearly if we were 
dealing not with the (1 11) curve but the (i 11) 
curve the equivalent intersection would be 
between curves (511) (200) (311). Thus the 
intersections on other curves in the same family 
can be inferred. The letter T indicates that the 
intersection can persist if the crystal is tetragonal 
and the letter O that it also persists when the 
crystal is orthorhombic. 

It should be noted that many of the multiple 
intersections are symmetrically related and these 
are next to one another in the tables. In fcc  
crystals, for example, (11 1) curves may have 
four sets of three symmetrically related multiple 
intersections. They are clearly in threes because 
[11 1] exhibits three-fold symmetry. When we 
turn to the (200) curves the intersections are in 
sets of four. 

Quintuple intersections are seen in patterns 
from body centred cubic crystals, but these 
degenerate into pairs of triple intersections if the 
crystal becomes tetragonal. Orthorhombic crys- 
tals display markedly fewer multiple inter- 
sections than tetragonal which in turn have 
fewer than cubic crystals. 

Turning to Fig. lb and lc again, we can now 
show how these tables are of use. Curves 4 and 14 
surround a point of three fold symmetry and it 
has been shown that the crystal is face centred 
cubic in structure. Curve 4 is a (222) curve and 
exhibits three pairs of triple intersections in 
agreement with the number given in Table IV. 
The table indicates that the other curves par- 
ticipating in the intersections are from {200} 
and {220} planes. From curvature considera- 
tions the curve with least curvature in each case 

TABLE IV Multiple intersections in face centred 
lattices (first six diffracting planes only) 

{t 11 } lines 
(111) (200) (311) T 
(111) (020) (131) T 
(111) (002) (113) 
(111) (220) (3 i 1) 
(111) (220) (i31) 
(111) (202) (i13) 
(111) (029~) (13i) 
(111) (022) (1i3) 
(111) (202) (31i) 
(111) (311) (400) T.O. 
(111) (131) (040) T.O. 
(111) (113) (004) T.O. 

{200} lines 
(200) (020) (220) T.O. 
(200) (002) (202) T.O. 
(200) (020) (220) T.O. 
(200) (002) (202) T.O. 
(200) (111) (311) T. 
(200) ( i i l )  (3il) T. 
(200) ( i l i )  (31i) T. 
(200) ( i i i )  (3ii) T. 
(200) (022) (222) 
(200) (022) (222) 
(200) (022) (222) 
(200) (022) (222) 

{220 } lines 
(220) ( l i l )  (311) 
(220) ( i l  1) (131) 
(220) (1 i i )  (31 i) 
(220) ( i l i )  (13i) 
(220) (200) (020) T.O. 
(220) (002) (222) T.O. 
(220) (002) (222) T.O. 
(220) (220) (400) T.O. 
(220) (220) (040) T.O. 

{311 } lines 
(311) (i 11) (200) T. 
(311) (1 i l )  (220) T. 
(311) ( l l i )  (202) T. 
(311) (111) (400) T.O. 

{222} lines 
(222) (002) (220) 
(222) (200) (022) 
(222) (020) (202) 

{400} lines 
(400) ( l i d  (3il) T.O. 
(400) (11 i) (31 i) T.O. 
(400) ( l i i )  (3ii) T.O. 
(400) (111) (311) T.O. 
(400) (202) (202) T.O. 
(400) (220) (220) T.O. 
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TABLE V Multiple intersections in body centred systems (first six diffracting lines only) 

Cubic Tetragonal Cubic Tetragonal 

{110} lines {211 } lines 
(I 10) (0il) (211) (1 i2) (202) (110) (0il) 211) (211) (110) (0il) (202) (1i2) 

(110) (1 i2) (202) (211) (101) (01i) (220) (12i) 
(110) (i01) (121) (I12) (022) (110) (i01) (121) (211) (011) (200) T.O. 

(110) (i12) (022) (211) (0ii) (222) T.O. 
(110) (i0i) (12i) (i12) (022) (110) (i0i) (12i) (211) (il0) (031) T. 

(110) (i12) (022) (211) (i01) (013) 
(110) (0ii) (21i) (1 i2) (202) (110) (0ii) (21i) (211) (202) (310) 

(110) (1i2) (202) (211) (220) (301) T. 
(110) (020) (130) (310) T. 
(110) (200) (130) (] 10) T. {220 } lines 

(110) (1i0) (200) T. (220) (101) (01i) (12i) (211) 
(110) (i10) (020) T. (220) (011) (10i) (121) (21i) 
(110) (002) (112) T.O, (220) (1 i0) (310) T. 
(110) (002) (112) T.O. (220) (i 10) (130) T. 
(110) (121) (301) T. (220) (200) (020) T.O. 
(110) (21 I) (031) Y. (220) (002) (222) T.O. 
(I 10) (12i) (30i) T. (220) (002) (222) T.O. 
(110) (21 i) (03 i) T. (220) (2 i 1) (301) T. 
(110) (ii2) (222) T.O. (220) (2ii) (30i) T. 
(110) (ii2) (222) T.O. (220) (031) (i21) T. 
(I 10) (2:20) (3 i 0) T. (220) (03 i) (i 2 i) T. 
(110) (220) (i30) T. 

{200 } lines {310 } lines 
(200) (i10) (310) (i30) T.O. (310) (110) (020) (130 T. 
(200) (i 01) (301) (i 03) T.O. (310) (i 10) (200) (I 30) T. 
(200) (ii0) (3i0) (I30) T.O. (310) (101) (112) 
(200) (i 0 i) (30 i) (I 03) T.O. (310) (10 i) (112) 
(200) (110) (1i0) T. (310) (1i0) (220) T. 
(200) (101) (10 i) (310) (211) (202) 
(200) (011) (211) Y.O. (310) (21i) (202) 
(200) (0il) (2il) T.O. 
(200) (01 i) (21 i) T.O. { 222 } lines 
(200) (0ii) (2ii) T.O. (222) (211) (211) (222) 
(200) (020) (220) Y.O. (222) (121) (12 t) (222) 
(200) (002) (202) Y.O. (222) (112) (112) (222) 
(200) (020) (220) T.O. (222) (110) (ii2) T.O. 
(200) (002) (202) T.O. (222) (011) (2ii) Y. 
(200) (022) (222) T.O. (222) (101) (i2i) T. 
(200) (022) (222) T.O. (222) (200) (022) T.O. 
(200) (022) (222) T.O. (222) (020) (202) T.O. 
(200) (022) (222) T.O. (222) (002) (220) Y.O. 

(211 ) (110) (0 T 1) 

will be from a {200} plane. Thus if curve 18 is 
(220) then curve 15 is (002) and if curve 16 is 
(020) then 20 is (202). Curves 17 and 19 must 
then be (200) and (022) respectively. Curve 18 
also intersects with curves 2 and 8. Curve 8 being 
that with the next greatest curvature to curve 14 
must be (311) and studying the table we see curve 
2 must be (1 i 1). Study of the table reveals that 
in the absence of a (400) curve all the multiple 
intersections on the (220) curve have now been 
dealt with. Curve 20 makes a similar multiple 
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intersection with curve 8 and from this we see in 
the table that curve 1 is (11 i). The analysis 
continues in this manner and this method is the 
most rapid one for indexing cubic Kossel 
patterns. 

6. Indexing in practice 
The indexing techniques have been described 
with reference to a Kossel pattern from a face 
centred cubic crystal. This is a pattern that is 
easily solved by any of the methods given here. 
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Non-cubic crystals, however, exhibit Kossel 
patterns in which the indexing problem is more 
difficult and we will now demonstrate the applica- 
tion of the indexing techniques to the Kossel 
patterns from beryllium (hexagonal) and cement- 
ite (orthorhombic). 

6.1, Beryllium 
The pattern traced in Fig. 5 is a transmission 
pseudo-Kossel pattern f rom a beryllium crystal 
using Manganese radiation. Beryllium has a 
hexagonal crystal structure with lattice para- 
meters, a = 2.268 A, c = 3.594 • (A.S.T.M.), and 
one would expect diffraction f rom the planes 
listed below in Table VI. In the figure there are 
three "mirror  lines", XX' ,  YY' ,  ZZ '  which are 
traces of (10 i0)  (1 120) and (0002) planes. One 
mirror line, ZZ' ,  is at right angles to the other 
two and this must be a (0002) trace. Curves A 
and B are in the same zone and since they have 
the same axis perpendicular to ZZ '  this is the 
[0002] zone. From the Table VI we see that A 
and B can only be curves diffracted by the 
{10i0} and {1i20} famillies of  planes and 
A having the greatest curvature is {1120}. 

~//i X' 
-.~ I I /,'Y' 

�9 c.... ..~.. 

Z~ "~ / 

x / ) 
/ ~ . . ~  ~ 

Figure 5 B e r y l l i u m  K o s s e l  p a t t e r n .  

Curve D clearly has lines XX'  and YY'  as axes 
and must be (0002). Curve C can now only be 
{ 1 0 i l }  or {10i2}.  There is not sufficient 
curvature for the C curve to have a semi-apex 
angle of 37 ~ 48' (this is quickly seen, when 
Rowlands Bevis charts are used) and so they 
must be from planes of the {10 i 1 } family. Curves 
from {10i2} planes were not detected in this 

TABLE VI Diffraction from beryllium using 
manganese radiation 

(h k i l) Intensity c~ 

(1050) 20 57 ~ 46' 
(0002) 14 54 ~ 3" 
(10i 1) 100 52 ~ 36" 
(10i2) 12 37 ~ 48" 
(1120) 12 22 ~ 48' 

pattern possibly because they were too weak to 
be seen. 

6.2. Cement i te  

The crystal structure of cementite has been 
studied by many authors including Fasiska and 
Jeffrey [9] by Debye-Scherrer methods and is 
orthorhombic Pnma,  with lattice parameters, 
a = 4.525A, b = 5.088 A, c = 6.740A. Here the 
convention a < b < e is used and our Miller 
indices differ in order from those of Fasiska and 
Jeffrey. 

Figure 6 C e m e n t i t e  K o s s e l  p a t t e r n .  

Since the major elemental constituent is iron, 
the wavelength of the diffracted radiation is iron 
K a  1, 1.935 A. The drawing in Fig. 6 includes 
some but not all of the curves in the cementite 
Kossel pattern. Some curves were very weak and 
could not be discerned for much of their length. 
All the strongest curves are, however, included. 

Preliminary study of the pattern indicates the 
presence of two "mirror  lines" intersecting at 

287 



N E l L  H A R R I S  

right angles. In our study of the symmetry we 
must allow for the non-appearance of some 
curves if other curves clearly indicate symmetry 
elements. The symmetry point at which the two 
lines intersect exhibits two-fold symmetry and is 
surrounded by the only full curve in the pattern. 
No geometrical multiple intersections are evident 
and because of low symmetry the method of 
counting intersections is unlikely to be successful. 
Two "accidental" multiple intersections are 
evident between curves C, B and D. 

The symmetry point must indicate an axial 
direction and curve A clearly associated with this 
direction must have two Miller indices zero. The 
semi-apex angles a of the Kossel curves were 
determined by the Peters and Ogilvie method and 
are as follows: 

A = 31 ~ = 33 ~  = 61 ~ , D  = 58 ~ and 
E = 2 8 ~  o . 

A list of possible Miller indices for A was drawn 
up from Fasiska and Jeffrrey's data and this is 
shown in Table VII. The only two sets of planes 
that could fit with the observed ~ angle of curve 
A are (400) and (006). 

TABLE VII Cementite planes with two Miller indices 
zero 

h k l  Structure factor 

(200) 84.0 64 ~ 40' 
(400) 84.7 31 ~ 12' 
(004) 43.9 54 ~ 57' 
(006) 93.0 30 ~ 30' 

We now turn our attention to curves C and E 
which have mirror lines as their major axes and 
must have one Miller index zero since the lines 
are traces of (100) (010) or (001)planes.  Again 
a list of  planes with one Miller index zero was 
constructed and is given in Table VIII.  Curves 
with structure factor below 50 have been excluded 

TABLE VIII  Cementite planes with one Miller index 
z e r o  

h k I Structure factor a 

(330) 115.8 44 ~ 18' 
(210) 109.4 62 ~ 0' 
(043) 104.2 29 ~ 0' 
(140) 93.3 37 ~ 48' 
(103) 114.3 61 ~ 15' 
(130) 78.4 52 ~ 20' 
(410) 83.5 23 o 47" 
(140) 93.3 37 ~ 47' 
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since one would not expect to detect them in the 
pattern. 

Lattice planes producing curves with a angles 
similar to curve C are (103) and (210) and the 
only one corresponding with curve E is (043). 
The angle between the symmetry point and the 
[043] pole is found by the Peters and Ogilvie 
method and is 61 o. This is in agreement with the 
angle between the [043] and [001] poles which 
means that the curve A must have indices (006) 
and in particular the symmetry point indicates an 
[001] direction. We may also conclude that 
because E is an (043) curve its axis must be the 
trace of  a (100) plane and the other "mirror  line" 
intersecting at right angles at the [001 ] pole is the 
trace of  an (010) plane. Curves C must have 
Miller indices with k = 0 and are thus (103) 
and (103) Kossel curves. The angle between the 
poles of  curves C and the [001] pole are in 
agreement with this conclusion. All other curves 
in the pattern may now be indexed according to 
the positions of their poles in the stereographic 
projection and following this course we find that 
curves D are diffracted by {113} planes and 
curves B by {23 3 } planes. 

7. Conclusion 
Indexing procedures for Kossel patterns are 
unambiguous because symmetry, intensity, 
curvature, numbers of intersections, both simple 
and multiple and angles between poles in the 
stereographic projection must all support the 
result. So much information is available in a 
single Kossel pattern that it is an easy matter to 
cross-check the solution. 

Much has been written about difficulties 
arising in the solution of powder patterns and 
diffractometric measurements. Many of these 
difficulties can be overcome by use of the back- 
reflection Kossel technique and this is clearly 
demonstrated in a study of tantalum oxide by 
Harris et al. [10].The volume of material required 
for these experiments is very much smaller than 
is required for powder patterns. A Kossel pattern 
may be obtained from a single crystal grain of  
material 5 gm in diameter. I f  the major elemental 
constituents of such a grain do not emit X- 
radiation of a suitable wavelength for diffraction 
by the crystal lattice this is overcome by the 
vacuum deposition of a �89 pm thick layer of  a 
suitable element on the surface of the crystal. 

Few problems have been attempted in which 
Kossel diffraction is employed for the analysis of  
non-cubic crystal structures. It  has been shown 
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that  the indexing of Kossel patterns from cubic 
crystals is a simple matter  bu t  the indexing of 
patterns f rom non-cubic  crystals is no t  a serious 
problem when all the indexing techniques are 
employed. 
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